高等数学(上)
高等数学(上)
1万+ 人选课
更新日期:2025/05/09
开课时间2025/02/27 - 2026/12/31
课程周期96 周
开课状态开课中
每周学时-
课程简介

 高等数学也称为微积分,是理工科大学生一门重要的数学类基础课程,也是学生进入大学接触的第一门数学课程。哈尔滨理工大学的高等数学课程历经七十年的淬炼,业已成为学校的放心课程、品牌课程和明星课程,在历届的学生评价和学校评价中,都首屈一指、名列前茅!
       该课程在2021年荣获首批国家级课程思政示范课程,在2020年荣获首批国家级线下一流本科课程,在2022年荣获黑龙江省课程思政示范课程,在2019年荣获黑龙江省线下一流本科课程,在2022年、2020年、2018年三次荣获黑龙江省高等教育教学成果一等奖,在2011年黑龙江省高等数学课程教学质量专项评估中取得了省属院校第一名的好成绩,在2003年荣获省级精品课程。
       高等数学课程包括一元(多元)微积分、向量代数与空间解析几何、级数和常微分方程等内容。通过本课程的学习,使学生掌握微积分的思想和方法,提升学生的数学思维能力和空间想象能力。在教学的整体设计中,以学生发展为中心,基于OBE教学理念,遵循成果导向教育反向设计原则,科学引入“36550”框架标准,课程思政“15143”框架,实现在课程中三全育人。
    “哈理工版”的高等数学课程教育理念先进、改革内涵丰富、创新方法科学。该课程以高等数学精英范式引领教学改革方向,以线上线下融合式高等数学教学模式覆盖全校学生,以高等数学竞赛平台为出口去检验学习成效,以优秀的高等数学教学团队为技术保障,以“互联网+高等数学”教学形态为依托,得到的教学改革成果内容丰富、理论和实践水平较高,并已经大量应用于本校和其他同类型理工科院校的教学改革和实践中。

课程大纲

哈尔滨理工大学高等数学课程简介

  • 1.1 哈尔滨理工大学《高等数学》课程简介视频
  • 1.2 哈尔滨理工大学《高等数学》线上课程前言
  • 1.3 同济第七版《高等数学》上册电子书

第一章 函数与极限

  • 2.1 1.1 映射与函数
  • 2.2 1.2 数列的极限
  • 2.3 1.3 函数的极限
  • 2.4 1.4 无穷小与无穷大
  • 2.5 1.5 极限运算法则
  • 2.6 1.5 习题
  • 2.7 1.6 极限存在准则,两个重要极限
  • 2.8 1.7 无穷小的比较
  • 2.9 1.8 函数的连续性与间断点
  • 2.10 1.9 连续函数的运算与初等函数连续性
  • 2.11 1.9 习题
  • 2.12 1.10闭区间上连续函数的性质
  • 2.13 1.10 习题

第二章 导数与微分

  • 3.1 2.1 导数的概念
  • 3.2 2.2 函数的求导法则
  • 3.3 2.3 高阶导数
  • 3.4 2.4 隐函数及参数方程所确定的函数的导函数、相关变化率
  • 3.5 2.5 函数的微分

第三章 微分中值定理与导数的应用

  • 4.1 3.1 微分中值定理
  • 4.2 3.2 洛必达法则
  • 4.3 3.3 泰勒公式
  • 4.4 3.4 函数的单调性与曲线的凹凸性
  • 4.5 3.5 函数的极值与最大值最小值
  • 4.6 3.6 函数图形的描绘
  • 4.7 3.7 曲率
  • 4.8 3.8 *方程的近似解

第四章 不定积分

  • 5.1 4.1 不定积分的概念与性质
  • 5.2 4.2 换元积分法
  • 5.3 4.3 分部积分法
  • 5.4 4.4 有理函数积分法

第五章 定积分

  • 6.1 5.1 定积分的概念与性质
  • 6.2 5.2 微积分基本公式
  • 6.3 5.3 定积分的换元法与分部积分法
  • 6.4 5.4 反常积分
  • 6.5 5.5 *反常积分的审敛法

第六章 定积分的应用

  • 7.1 6.1 定积分的元素法
  • 7.2 6.2 定积分在几何上的应用
  • 7.3 6.3 *定积分在物理上的应用

第七章 微分方程

  • 8.1 7.1 微分方程的基本概念
  • 8.2 7.2 可分离变量的微分方程
  • 8.3 7.3 齐次方程
  • 8.4 7.4 一阶线性微分方程
  • 8.5 7.5 可降阶的微分方程
  • 8.6 7.6 高阶线性微分方程
  • 8.7 7.7 常系数齐次微分方程
  • 8.8 7.8 常系数非齐次线性微分方程
  • 8.9 7.9*欧拉方程
  • 8.10 7.10* 常系数线性微分方程组解法举例