“信号与系统”这门课,是高等学校电子与信息工程、自动化、微电子、生物医学工程、计算机及物联网等专业必修的一门核心基础课,也可以说是这些专业的启蒙课,是进行后续课程,比如:“数字信号处理”、“数字图像处理”、“随机信号分析”、“通信原理”等课程的基础准备。
简单来说,“信号与系统”这门课的主要研究内容,就是借助于一定的数学工具,对自然界中形态各异的信号与系统的共性部分,也即线性与时不变性等特性,对信号与系统进行表述与分类;同时,在“线性与时不变”特性的基础上,结合“信号分解”的思想,发展出了一系列基本但又重要的信号与系统的分析方法与处理工具。
具体来说,本课程的主要内容包括:信号与系统的概念与分类、信号的时域分析、系统的时域分析、信号的频域分析、系统的频域分析、连续信号与系统的复频域分析、离散信号与系统的复频域分析等内容。
课程目标:
本课程的一个主要教学目的,就是:学生不仅可以掌握信号与系统的基本概念与原理、分析与处理方法,更重要的是,帮助学生分析并揭示隐含在一个个数学表述中的物理含义或工程现象;同时,也逐步培养学生用数学逻辑的思维方式,对常见的一些物理与工程现象,能够从数学的角度,做进一步的解释与分析,从而把理论与实践紧密结合起来,为学生以后从事信号与信息处理、移动通信、工业自动化及物联网应用等方面的工作与研究奠定扎实的科研基础。
课程特色:
1. 教学内容编排合理、教学思路清晰:
得益于优秀教材,本课程教学内容采用连续与离散并行排列、先时域后频域再复频域的组织方式,不仅使得教与学的思路更清晰,而且,学生在学习过程中,还可以对信号与系统的连续情形与离散情形差异进行前后对比,更有利于对所学内容的理解与把握。
2. 强调物理含义的讲解,弱化数学公式的推导:
在教学理念上,突出体现“信号表示、系统描述”的教学思路。充分揭示隐含在信号与系统的表述与分析中的物理含义,从而使得学生对学习多年的数学公式赋予以丰富的物理含义或工程现象,培养学生对实际工程问题进行数学建模的能力,从此,对数学的学习不再茫然不知所用。同时,学生对一些必要的公式推导,也不会再感到抽象与枯燥,从而进一步增强学生学习的热情与信心。
3. 以专业知识的获取为先,专业外语的学习为辅:
本门课,采用奥本海默编写的《信号与系统》英文版教材,实行双语教学。但为了保证教学效果,在具体教学过程中,我们使用中文授课,并且在讲解的过程中,尽可能地使得所讲中文与课件中的英文分层次地实时对应,从而在降低语言障碍的同时,保证教学效果。另外,为了促进大家的专业外语水平,本课程的其他教学工作,比如:作业、考试、讨论等基本上以全英文方式进行。
Ch1 Signals and Systems
Ch1.0 Introduction
Ch1.1 CT and DT Signals
Homework1-1
Ch1 Signals and Systems
Ch1.2.1 Basic Transformations of the Dependent Variables
Ch1.2.2 Basic Transformations of the Independent Variables
Homework1-2
Ch1 Signals and Systems
Ch1.3.1 Exponential and Sinusoidal Signal (1)
Ch1.3.2 Exponential and Sinusoidal Signal (2)
Ch1.3.3 Exponential and Sinusoidal Signal (3)
Homework1-3
Ch1 Signals and Systems
Ch1.4.1 The Unit Impulse and Unit Step Functions (1)
Ch1.4.2 The Unit Impulse and Unit Step Functions (2)
Homework1-4
Ch1 Signals and Systems
Ch1.4.3 The Unit Impulse and Unit Step Functions (3)
Homework 1-5
Ch1 Signals and Systems
Ch1.5.1 Continuous Time and Discrete Time Systems (1)
Ch1.5.2 Continuous Time and Discrete Time Systems (2)
Ch1 Signals and Systems
Ch1.6.1 Basic System Properties (1)
Ch1.6.2 Basic System Properties (2)
Ch1.6.3 Basic System Properties (3)
Homework 1-6
Ch2 Linear Time -Invariant Systems
Ch2.0 Introduction
Ch2.1.1 Discrete-Time Linear Time-Invariant Systems (1)
Ch2.1.2 Discrete-Time Linear Time-Invariant Systems(2)
Homework 1-7
Ch2 Linear Time -Invariant Systems
Ch2.2.1 Continuous-Time Linear Time-Invariant Systems(1)
Ch2.2.2 Continuous-Time Linear Time-Invariant Systems(2)
Homework2-2
Ch2 Linear Time -Invariant Systems
Ch2.3.1 Properties of Linear Time-Invariant Systems(1)
Ch2.3.2 Properties of Linear Time-Invariant Systems(2)
Ch2.3.3 Properties of Linear Time-Invariant Systems(3)
Homework2-3
Ch2 Linear Time -Invariant Systems
Ch2.4.1Causal LTI systems described differential & difference equations (1)
Ch2.4.2 Causal LTI systems described differential & difference equations (2)
Ch2.4.3 Determine the homogeneous solution & particular solution
Ch2.4.4 Determine the complete solution by solving LCCDE
Homework2-4
Ch2 Linear Time -Invariant Systems
Ch2.4.5 Translation of initial conditions by singularity functions balancing method
Ch2.4.6 Solving LCCDE by Bilingual Zero Method
Homework2-5
Ch2 Linear Time -Invariant Systems
Ch2.4.7.1 Determine the impulse response of LTI systems by solving LCCDE (1)
Ch2.4.7.2 Determine the impulse response of LTI systems by solving LCCDE (2)
Ch2.4.8 Diagram discription of LCCDEdiscribe LTI systems
Homework2-6
Ch3 Fourier Series Representation of Periodic Signals
Ch3.0 Introduction
Ch3.1.1 Complex Exponential Formed Fourier Series Representation of CT Periodic Signals
Ch3.1.2 Trigonometric Formed Fourier Series Representation of CT Periodic Signals (1)
Ch3.1.3 Trigonometric Formed Fourier Series Representation of CT Periodic Signals (2)
Ch3.1.4 Relationship between the trigonometric and exponential formed CTFS
Homework3-1
Ch3 Fourier Series Representation of Periodic Signals
Ch3.2.1 Amplitude and Phase Frequency Spectral of CTFS (1)
Ch3.2.2 Amplitude and Phase Frequency Spectral of CTFS (2)
Ch3.2.3 Amplitude and Phase Frequency Spectral of CTFS (3)
Ch3.3 Convergence and Gibbs’ Phenomenon
Homework3-2
Ch3 Fourier Series Representation of Periodic Signals
Ch3.4.1 Properties of Continuous-Time Fourier Series (1)
Ch3.4.2 Properties of Continuous-Time Fourier Series (2)
Homework3-3
Ch3 Fourier Series Representation of Periodic Signals
Ch3.5.1 Fourier Series Representation of Discrete-Time Periodic Signals
Ch3.5.2 Properties of Discrete-Time Fourier Series
Homework3-4
Ch4 The Continuous-Time Fourier Transform
Ch4.1.1 The representation of Aperiodic Signals-CTFT(1)
Ch4.1.2 The representation of Aperiodic Signals-CTFT( 2)
Ch4.2 The Fourier Transform for Periodic Signals
Homework 4-1
Ch4 The Continuous-Time Fourier Transform
Ch4.3.1 Properties of Continuous-Time Fourier Transform (1)
Ch4.3.2 Properties of Continuous-Time Fourier Transform (2)
Homework 4-2
Ch4 The Continuous-Time Fourier Transform
Ch4.4 The Convolution Property
Ch4.5 The Multiplication Property
Ch4 The Continuous-Time Fourier Transform
Ch4.6 The Frequency Response Function of LTI Systems characterized by LCCDE\'s
Ch5 The Discrete-Time Fourier Transform
Ch5.1 The Representation of Aperiodic Signals-DTFT
Ch5.2 The DTFT for Periodic Signals
Homework 5-1
Ch5 The Discrete-Time Fourier Transform
Ch5.3 The DFT for Finite Length Sequences
Ch5.4.1 Properties of Discrete-Time Fourier Transform (1)
Ch5.4.2 Properties of Discrete-Time Fourier Transform (2)
Homework 5-2
Ch5 The Discrete-Time Fourier Transform
Ch5.5.Duality of DTFT
Ch5.6 The Frequency Response Function of LTI Systems characterized by LCCDEs
Ch6 Sampling
Ch6.0 Introduction
Ch6.1.1 Impulse-Train Sampling
Ch6.1.2 Reconstruction of the Sampled Signals
Ch6 Sampling
Ch6.1.3 The Effect of Under-Sampling- Aliasing
Ch6.2 The Sampling of Narrow Band Signals
Ch6.3 The Zero-Holder Sampling