离散数学
离散数学
1000+ 人选课
更新日期:2025/04/25
开课时间2025/02/25 - 2025/08/25
课程周期26 周
开课状态开课中
每周学时-
课程简介

离散数学是研究离散量的结构和相互间的关系,是在抽象和理论的基础上提供的数学方法,是计算机科学中基础理论的核心课程。离散数学为许多后继课程(如数据结构、操作系统、数据库原理、软件工程、算法设计与分析、系统结构、网络原理)提供了必要的数学基础和工具。同时,离散数学为学生提高分析问题和解决问题的能力提供了一条有效的途径,从而为今后的学习和工作打下坚实的基础。

本课程主要包含4部分内容:集合论、数理逻辑、图论、代数系统。集合论是离散数学的基础,同时是计算机科学的基础,计算机科学领域中的大多数基本概念和理论采用集合论的有关术语描述和论证。数理逻辑是通过研究形式化的推理系统加强逻辑思维能力的培养,而代数系统是通过研究代数系统或代数结构培养更高层次的抽象思维能力,这两种能力是计算思维的核心。图论的基本知识是计算机工作者的必备基础知识。


课程大纲

命题逻辑

  • 1.1 命题及命题联结词
  • 1.2 命题公式及命题的类型
  • 1.3 命题的蕴涵式与等价式
  • 1.4 主范式
  • 1.5 命题的演绎推理

谓词逻辑

  • 2.1 谓词的概念及改名规则
  • 2.2 谓词公式的等价式与蕴含式

集合

  • 3.1 集合的相关概念
  • 3.2 集合的运算

二元关系

  • 4.1 关系的定义及其表示
  • 4.2 关系的运算
  • 4.3 关系的性质
  • 4.4 关系的闭包
  • 4.5 等价关系
  • 4.6 偏序关系

函数

  • 5.1 函数的概念及函数的性质
  • 5.2 函数的运算及反函数

  • 6.1 图的基本概念
  • 6.2 图的连通性
  • 6.3 图的矩阵表示及其运算

特殊图

  • 7.1 欧拉图
  • 7.2 哈密顿图
  • 7.3 二部图
  • 7.4 树

代数系统

  • 8.1 代数系统
  • 8.2 群

考试提纲

  • 9.1 2022离散数学考核大纲